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Abstract 

The objective of the present work is to develop analytical modelling of an unsteady fluid flow through an 

elastic tube. The fluid is considered to be Newtonian and incompressible. The cylindrical tube wall 

boundaries are isotropic. The study provides a review of recent modelling aimed at understanding the effects 

of fluid parameters over the elastic tube wall behaviour. First of all, the fluid flow is analysed following an 

asymptotic approach according to a large Reynolds number and a small aspect radio. Second of all, the wall 

has been assumed to be a thin shell, which generates a small axisymmetric vibration. The mathematical model 

is developed according the thin shell theory. The dynamic behaviour of the tube wall is represented and 

discussed. 
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1. INTRODUCTION 

 

In the recent years, analytical modelling of flow 

through a deformable tube has attracted thorough 

attention. This is due to its occurrence for a 

diversity practice in many industrial systems and its 

capability to generate a variety of instabilities as 

using a rigid wall [1]. This standing is reflected in 

biology [2], in micro-fluidic devices [3,4], in the 

renewable energies [5], and Recently in the field of 

transporting gaseous materials under pressure [6] 

and in engineering [7,8]. 

Although much numerical and experimental 

progress has been made during the past decades 

[9,10], analytical modelling for Newtonian fluid 

flow through an elastic tube is not absolutely 

understood yet and remains to be discovered. 

The present work focuses an analytical analysis 

of the fluid flow aspect and its effect on the tube 

wall behaviour. It is based on an asymptotic 

approach carried by a numerical simulation. In this 

model, the aspect ratio of the tube ‘ε’ presents a 

small parameter, which governs the flow 

asymptotic expansion. Moreover, based on linear 

approach of the thin shell theory, the equations of 

the motion of the tube wall are developed by 

asymptotic process founded on geodesic curvature 

parameter . 

The rest of this article is organized as follow. In 

Section 2, a formulation of the equations governing 

the problem is presented. The linearization 

approach is used to make an analytical solution is 

described in Section 3. An application with 

interpretation is given in Section 4. Finally, 

conclusion is drawn in Section 5.   

2.FORMULATION OF THE PROBLEM 

 

2.1. Fluid 

 

In the presence of gravity force, we analyse an 

unsteady flow of an incompressible, viscous and 

Newtonian fluid in a symmetric axial cylindrical 

domain.  and denote respectively the fluid 

density and the kinematic viscosity, L  is the tube 

length, h  is the thickness and Ro is the radius at 

rest.  ,R z t   is the variable radius (i.e. radius is a 

function of the longitudinal variable and time). 

We assume that the tube behaves as a homogenous, 

isotropic and linear elastic shell with t is the tube 

density (Fig.1). 

 
Fig. 1. Deformed domain 

 

The physical variables are denoted using 

primes. At this level, we introduce dimensionless 

variables, namely: 
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 r  : radial displacement 

 z  : axial displacement 

 t  : time 

 u  : radial velocity 

 w  : axial velocity 

 p  : pressure 

Each dimensionless parameter of the above list 

accompanied by apostrophe ( ) describes the 

corresponding physical parameter (with 

dimension). 

Also, here
fT is the fluid reference time,

( 1) is the aspect ratio and
0W represents the 

inlet axial velocity. 

Using system (1), the dimensionless Navier-

Stokes and continuity equations of the problem, 

read as: 
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The numbers figuring in (2) are the Reynolds 

number 0 0
e

R W


   and the Strouhalnumber

0

0

t

f

R
S

W T
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At large Reynolds number and low Strouhal 

number, the system (2) is valid under the 

asymptotic restriction: 
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The relation (03) reveals two important 

interactions physical characterizing our systems: 

the fluid flow unsteady and the fluid viscosity 

respectively with the geometry. These interactions 

present the coupling between the timescale and the 

nature of fluid with space scale. This approach, 

covering a several class of applications, is applied 

to studies of systemic arterial system. In particular, 

the blood flow modelling through vessels is 

assumed to be Newtonian. 

 

2.2. Tube 

 

The tube wall dynamic behaviour is analysed 

according to the thin shell theory [11-12]. More 

precise, the linear shell theory process adequately 

predicts the stresses and deformations relation for 

shells exhibiting a small elastic deformation [13]. 

For this purpose, the flexible tube is analytically 

modelled by using the non-linear Kirchhoff–Love 

theory [14].  The following system formulates the 

dimensionless variables and parameters:  
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 (4) 

ins tubeP 
: pressure inside the tube 

 
out tubeP 

: pressure outside the tube 

 *

3P  : dimensionless pressure gradient 

 R  : dimensionless variable radius

 
t fT T  :tube time reference 

 
0.2u  : axial displacement reference  

 ,
 

: Lame constants. 

Where e1
, e0

,g c
andg f

0
are constants which 

characterize the problem.  

In this section, we adopt the degenerate 

approach to better modelling the behaviour. This 

brings out asymptotic constraints stating in the 

following system: 
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Where 
1 R

R z




is the tube geodesic curvature 

along the ze . 

According the system (5), the governing 

equations for the tube motion are reported in the 

under system: 
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*

2u is the dimensionless wall axial displacement. 

 

2.3. Boundary condition 

In this section, we present the system dynamic 

boundary conditions. In fact, the condition for all 
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velocity components base on non-slip hypothesis 

(the fluid particles adhere to the inner surface of the 

tube). Moreover, the both tube extremities are 

slotted and the system involves an axisymmetric 

behaviour. These conditions are written in the 

following form (Table 1): 

 
Table 1. Boundary conditions 

Type Boundary conditions 

Initial          u = 0 for z= 0 t = 0
 

w = 1 for z= 0 t = 0  

Adherence 

 

 

u =
¶R

¶t
for r = R0 -

h

2
 

w =
¶u2

*

¶t
for r = R0 -

h

2
 

Axisymmetric 

 
¶w

¶r
= 0 for r = 0

 

 

3. LINEARIZED PROBLEM AND 

SOLUTIONS 

 

3.1. Fluid 

Let us linearize system (2) about the particular 

solution at the inlet of the tube. Denoting by “ ” 

the linearization parameter, the “Least 

Degeneration Principle” provides us the following 

form: 
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Whereu andw are respectively the perturbed 

radial and axial velocities and p is the perturbed 

pressure. ambP is the dimensionless ambient 

pressure: 
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Inserting (7) into (2), we obtain at order 
3

included, the non-degenerate equations, namely: 

The 0th order terms: 
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The 1st order terms: 
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The 2nd order terms: 
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We remark that the equations (10) represent the 

non-linear convective terms. But, at this level, we 

look for the linearized solutions. So, the 1st order 

terms are neglected and the analytical solution of 

the pressure is obtained: 
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Where the 0J and 1J are the Bessel functions 

and is the fluid frequency. 1A and 2A are the 

complex numbers with I is the imaginary unit. 

 

3.2. Tube 

To resolve the equation (6), we take up the 

linearization process around the initial equilibrium 

state. We introduce the linearized parameters 2

 2 1 :  
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Where R and 2u  are respectively the perturbed 

radial and axial wall displacement of the tube and

3P  is the perturbed pressure gradient. 

Inserting (13) into (6), the approached solution 

is formulated at the 0th order of
1/3

2 by: 

 0

3
1

0f
r

P R     (15) 

The first relation analytically presents the linear 

correlate to fluid flow pressure to the wall 

deformation.  This is in totally agreement with 

many numerical models [15-16]. 

 

4. APPLICATION AND INTERPRETATIONS 

 

In order to investigate the dynamical behaviours 

of a three-dimensional flexible tube due to fluid-
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structure interaction, the present section aims to 

understand the blood flow mechanics in the 

main artery in the human body for blood pressures 

80 mmHg and 120 mmHg: Aorta. On one hand, it is 

demonstrated that in medium and large arteries the 

blood can be assumed to be Newtonian. On the 

other hand, the Aorta natural elasticity affords to 

dampen the important pressure increases during the 

period of cardiac contraction (ventricular systole) 

and then the elastic return of this same wall during 

the period of cardiac rest (ventricular diastole) 

makes it possible to preserve in the arterial network 

a Minimum pressure (or diastolic pressure). The 

geometrical and numerical parameters of the 

simulation are listed in Table 2 (55 years old). 

 
Table 2. Geometrical and numerical parameters  

Parameter Value/Unit 

Fluid  

Density 

Dynamic viscosity 

Reference Time 

Inlet axial velocity  

1060    Kg/m3 

20       mPa.s 

1.4       sec 

05        cm/s 

Tube 

Density 

Young’s modulus 

Poisson’s ratio  

Length 

Radius  

Thickness  

1080    Kg/m3 

800      KPa 

0.45 

22        cm 

10        mm 

1.3       mm 

 

 
(a) 

 
(b) 

Fig. 2. Wall axial displacement at t=0.25 

(t’=0.35 sec). (a) Blood pressure : 80 mmHg. (b) 

Blood pressure : 120 mmHg 

 

The fig 2 illustrates the Aorta performance at 

t=0.25 (t’=0.35 sec) with system frequency in order 

to 21.28 Hz.  According the
0

f , the aorta’s wall 

displacement exhibits normallybehaviour (0-2,5 

mm) [17]. Furthermore, the swelling degree of 

aorta is characterized respectively by strain 24.45 % 

and strain 10.45 % for 120 mmHg and 80 mmHg. 

These results seem to be very consistent with the 

numerical and experimental literatures in terms of 

order of strain [18].According the said study, the 

strain, for the age range 50-59, should be 18 ± 9 %. 

 

 
(a) 

 

 
(b) 

Fig. 3. Aortic wall stress at t=0.25 (t’=0.35 

sec). (a) Blood pressure : 80 mmHg. (b) Blood 

pressure : 120 mmHg 

 

According the system frequency (21.28 Hz), the 

Fig 3 evaluates the potential of the Aorta stress at 

t’=0.35 sec. These findings reveal that, in 

descending Aorta, regions of low wall stress which 

are corresponding to regions high displacement (Fig 

2), are predisposed to the development of plaque 

while the wall highly oscillating [19]. Moreover, 

The special evolution of the wall stress shows that 

this analytical approach result is positively 

compared with the many results (0-100 KPa) [20] 

and the descending aorta distensibility (27.44 % 10-

3 KPa-1) is in good agreement with the results taken 

from Redheuil [18] (29 ± 1310-3 KPa-1). 

These results present conclusive evidence that 

the wall dilatation has an important correlate to age. 

This can be elucidated in light of the aortic 

distensibility with age. In fact, the increase in aortic 

size is more signified after the 5th decade [18]. At 

this period the strain decreases that is the main 

developer for reduced distensibility. The Redheuil 

has determined the average distensibility as 60 ±
1910-3 KPa-1for the individuals aged up to 50 and 

21 ± 910-3 KPa-1 over 50[18]. The low distensibility 
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of this study (55 years old) is in fair agreement with 

Redheuil and provides an accurate prediction of 

many cardiovascular events such as rupture risk of 

aortic aneurysms [21]. 

 

5. CONCLUSION 

 

In this document, the fluid structure’s 

interaction is analytically modelled. These findings 

enable us to evaluate of the aorta’s wall behaviour 

containing human blood flow. This arterial stiffness 

assessment should afford a best prediction to many 

cardiovascular diseases, beyond traditional risk 

factors, which remain currently undetected with a 

normal blood pressure.  

Subsequently, the aortic wall behaviour will be 

processed considering the axial velocity with a 

large interval frequency. This may help in better 

understandingthe limits of Aorta radial 

displacements and to manage several blood 

pressure range at large interval frequency.  
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